Título: | On the 3-restricted edge connectivity of permutation graphs |
Autor(es): | BALBUENA MARTINEZ, MARIA CAMINO TEOFILA GONZALEZ MORENO, DIEGO ANTONIO MARCOTE, FRANCISCO XAVIER |
Temas: | Algoritmos computacionales Optimización matemática Gráfico de conectividad |
Fecha: | 2009 |
Editorial: | ELSEVIER |
Citation: | Discrete applied mathematics, vol. 157, núm. 7, april 2009 |
Resumen: | An edge cut W of a connected graph G is a k-restricted edge cut if G−W is disconnected, and every component of G−W has at least k vertices. The k-restricted edge connectivity is defined as the minimum cardinality over all k-restricted edge cuts. A permutation graph is obtained by taking two disjoint copies of a graph and adding a perfect matching between the two copies. The k-restricted edge connectivity of a permutation graph is upper bounded by the so-called minimum k-edge degree. In this paper some sufficient conditions guaranteeing optimal k-restricted edge connectivity and super k-restricted edge connectivity for permutation graphs are presented for k=2,3. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/519 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
On the 3-restricted.pdf | 519.26 kB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.