DC Field | Value | Language |
dc.contributor.author | BALBUENA MARTINEZ, MARIA CAMINO TEOFILA | - |
dc.contributor.author | GONZALEZ MORENO, DIEGO ANTONIO | - |
dc.contributor.author | MARCOTE, FRANCISCO XAVIER | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/299097">DIEGO ANTONIO GONZALEZ MORENO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/7</dc:subject> | - |
dc.date.accessioned | 2020-06-26T00:28:10Z | - |
dc.date.available | 2020-06-26T00:28:10Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | Discrete applied mathematics, vol. 157, núm. 7, april 2009 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/519 | - |
dc.description.abstract | An edge cut W of a connected graph G is a k-restricted edge cut if G−W is disconnected, and every component of G−W has at least k vertices. The k-restricted edge connectivity is defined as the minimum cardinality over all k-restricted edge cuts. A permutation graph is obtained by taking two disjoint copies of a graph and adding a perfect matching between the two copies. The k-restricted edge connectivity of a permutation graph is upper bounded by the so-called minimum k-edge degree. In this paper some sufficient conditions guaranteeing optimal k-restricted edge connectivity and super k-restricted edge connectivity for permutation graphs are presented for k=2,3. | en_US |
dc.description.sponsorship | Discrete applied mathematics | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | ELSEVIER | en_US |
dc.relation.haspart | 0166-218X | - |
dc.rights | https://doi.org/10.1016/j.dam.2008.04.010 | - |
dc.rights | https://www.sciencedirect.com/science/article/pii/S0166218X08001893 | - |
dc.subject | Algoritmos computacionales | en_US |
dc.subject | Optimización matemática | en_US |
dc.subject | Gráfico de conectividad | en_US |
dc.title | On the 3-restricted edge connectivity of permutation graphs | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|