Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorVILLATORO TELLO, ESAU-
dc.contributor.authorRAMIREZ DE LA ROSA, ADRIANA GABRIELA-
dc.contributor.authorSANCHEZ SANCHEZ, CHRISTIAN-
dc.contributor.authorJIMENEZ SALAZAR, HECTOR-
dc.contributor.authorLUNA RAMIREZ, WULFRANO ARTURO-
dc.contributor.authorRODRIGUEZ LUCATERO, CARLOS-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/165545">ESAU VILLATORO TELLO</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/239516">ADRIANA GABRIELA RAMIREZ DE LA ROSA</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/170715">CHRISTIAN SANCHEZ SANCHEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/54971">HECTOR JIMENEZ SALAZAR</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/171288">WULFRANO ARTURO LUNA RAMIREZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/59762">CARLOS RODRIGUEZ LUCATERO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2020-06-26T15:41:59Z-
dc.date.available2020-06-26T15:41:59Z-
dc.date.issued2014-
dc.identifier.citationCLEF 2014 Working Notes : Working Notes of CLEF 2014 - Conference, vol. 1180en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/525-
dc.description.abstractThis paper describes the participation of the Language and Reasoning Group of UAM at RepLab 2014 Author Profiling evaluation lab. This task involves author categorization and author ranking subtasks. Our method for author categorization uses a supervised approach based on the idea that we can use the information on Twitter’s user profile, then by means of employing an attribute selection techniques we can extract attributes that are the most representative from each user’s activity domain. For the author ranking subtask we use a two step chained method that uses stylistics attributes (e.g. lexical richness, language complexity) and behavioral attributes (e.g. posts’ frequency, directed tweets) extracted from the users’ profile and the posts. We use these attributes in conjunction with a Markov Random Fields for improving an initial ranking given by the confidence of Support Vector Machine classification algorithm. Obtained results are encouraging and motivate us to keep working on the same ideas.en_US
dc.description.sponsorshipCLEF 2014 Working Notesen_US
dc.language.isoInglésen_US
dc.relation.haspart1613-0073-
dc.rightshttp://ceur-ws.org/Vol-1180/CLEF2014wn-Rep-VillatoroTelloEt2014.pdf-
dc.subjectTwitter - Investigacionesen_US
dc.subjectAgrupamiento de términosen_US
dc.subjectCampos aleatorios de Markoven_US
dc.subjectCatalogación de autores individuales - innovaciones tecnológicasen_US
dc.titleUAMCLyR at replab 2014 : author profiling task : notebook for repLab at CLEF 2014en_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
UAMCLyR 2014.pdf632.46 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.