DC Field | Value | Language |
dc.contributor.author | BALBUENA MARTINEZ, CAMINO | - |
dc.contributor.author | OLSEN, MIKA | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/201785">MIKA OLSEN</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/1</dc:subject> | - |
dc.date.accessioned | 2020-07-02T16:46:19Z | - |
dc.date.available | 2020-07-02T16:46:19Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Discrete Applied Mathematics, vol. 186, may, 2015 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/558 | - |
dc.description.abstract | The acyclic disconnection,−→ω (D), of a digraph D is the maximum number of connected components of the underlying graph of D − A(D∗), where D∗ is an acyclic subdigraph of D. We prove that −→ω (D) ≥ g − 1 for every strongly connected digraph with girth g ≥ 4, and we show that−→ω (D) = g −1 if and only if D ∼= Cg for g ≥ 5. We also characterize the digraphs that satisfy −→ω (D) = g − 1, for g = 4 in certain classes of digraphs. Finally, we define a family of bipartite tournaments based on projective planes and we prove that their acyclic disconnection is equal to 3. Then, these bipartite tournaments are counterexamples of the conjecture −→ω (T ) = 3 if and only if T ∼= −→C 4 posed for bipartite tournaments by Figueroa et al. (2012). | en_US |
dc.description.sponsorship | Discrete Applied Mathematics | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Ámsterdam : Elsevier | en_US |
dc.relation.haspart | 0166-218X | - |
dc.rights | https://doi.org/10.1016/j.dam.2015.01.025 | - |
dc.rights | https://www.sciencedirect.com/science/article/pii/S0166218X1500027X | - |
dc.subject | Teoría de grafos | en_US |
dc.subject | Dígrafo | en_US |
dc.subject | Matemáticas discretas | en_US |
dc.title | On the acyclic disconnection and the girth | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|