Título: | On the vertices of a 3-partite tournament not in triangles |
Autor(es): | GOMORA FIGUEROA, ANA PAULINA OLSEN, MIKA ZUAZUA VEGA, RITA ESTHER |
Temas: | Teoría de grafos Torneo (Teoría de grafos) Matemáticas discretas |
Fecha: | 2015 |
Editorial: | Ámsterdam : Elsevier |
Citation: | Discrete Mathematics, vol. 338, núm. 11, november, 2015 |
Resumen: | Let T be a 3-partite tournament and F3(T ) be the set of vertices of T not in triangles. We prove that, if the global irregularity of T , ig (T ), is one and |F3(T )| > 3, then F3(T ) must be contained in one of the partite sets of T and |F3(T )| ≤ k+1 4 + 1, which implies |F3(T )| ≤ n+5 12 + 1, where k is the size of the largest partite set and n the number of vertices of T . Moreover, we give some upper bounds on the number, as well as results on the structure of said vertices within the digraph, depending on its global irregularity. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/559 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
On the vertices.pdf | 381.67 kB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.