Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: Structural properties of CKI-digraphs
Autor(es): BALBUENA MARTINEZ, CAMINO
GUEVARA, M.
OLSEN, MIKA
HAYNES, T.W.
Temas: Matemáticas
Matemáticas computacionales
Teoría de grafos
Fecha: 2014
Editorial: Taylor & Francis
Citation: AKCE Int. J. Graphs Comb., 11, No. 1 (2014)
Resumen: A kernel of a digraph is a set of vertices which is both independent and absorbant. Let Dbe a digraph such that every proper induced subdigraph has a kernel. IfDhas a kernel, thenDis kernel perfect, otherwiseDis critical kernel-imperfect (for short CKI-digraph). In this work we prove that if a CKI-digraphDis not 2-arc connected, thenD−ais kernel perfect for any bridgeaofD. IfDhas no kernel but for all vertexx,D−xhas a kernel, thenDis called kernel critical. We give conditions on a kernel critical digraphDso that for allx∈V(D) the kernel ofD−xhas at least two vertices. Concerning asymmetric digraphs, we show that every vertexuof an asymmetric CKI-digraphDonn≥5 vertices satisfies d + (u) +d − (u)≤n−3 andd + (u), d − (u)≤n−5. As a consequence, we establish that there are exactly four asymmetric CKI-digraphs onn≤7 vertices. Furthermore, we study the maximum order of a subtournament contained in a not necessarily asymmetric CKI-digraph.
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/560
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Structural properties.pdf490.3 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.