Título: | Structural properties of CKI-digraphs |
Autor(es): | BALBUENA MARTINEZ, CAMINO GUEVARA, M. OLSEN, MIKA HAYNES, T.W. |
Temas: | Matemáticas Matemáticas computacionales Teoría de grafos |
Fecha: | 2014 |
Editorial: | Taylor & Francis |
Citation: | AKCE Int. J. Graphs Comb., 11, No. 1 (2014) |
Resumen: | A kernel of a digraph is a set of vertices which is both independent and absorbant. Let Dbe a digraph such that every proper induced subdigraph has a kernel. IfDhas a kernel, thenDis kernel perfect, otherwiseDis critical kernel-imperfect (for short CKI-digraph). In this work we prove that if a CKI-digraphDis not 2-arc connected, thenD−ais kernel perfect for any bridgeaofD. IfDhas no kernel but for all vertexx,D−xhas a kernel, thenDis called kernel critical. We give conditions on a kernel critical digraphDso that for allx∈V(D) the kernel ofD−xhas at least two vertices. Concerning asymmetric digraphs, we show that every vertexuof an asymmetric CKI-digraphDonn≥5 vertices satisfies d + (u) +d − (u)≤n−3 andd + (u), d − (u)≤n−5. As a consequence, we establish that there are exactly four asymmetric CKI-digraphs onn≤7 vertices. Furthermore, we study the maximum order of a subtournament contained in a not necessarily asymmetric CKI-digraph. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/560 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Structural properties.pdf | 490.3 kB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.