DC Field | Value | Language |
dc.contributor.author | BALBUENA MARTINEZ, CAMINO | - |
dc.contributor.author | GUEVARA, M. | - |
dc.contributor.author | OLSEN, MIKA | - |
dc.contributor.author | HAYNES, T.W. | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/201785">MIKA OLSEN</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/7</dc:subject> | - |
dc.date.accessioned | 2020-07-02T17:26:50Z | - |
dc.date.available | 2020-07-02T17:26:50Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | AKCE Int. J. Graphs Comb., 11, No. 1 (2014) | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/560 | - |
dc.description.abstract | A kernel of a digraph is a set of vertices which is both independent and absorbant. Let Dbe a digraph such that every proper induced subdigraph has a kernel. IfDhas a kernel, thenDis kernel perfect, otherwiseDis critical kernel-imperfect (for short CKI-digraph). In this work we prove that if a CKI-digraphDis not 2-arc connected, thenD−ais kernel perfect for any bridgeaofD. IfDhas no kernel but for all vertexx,D−xhas a kernel, thenDis called kernel critical. We give conditions on a kernel critical digraphDso that for allx∈V(D) the kernel ofD−xhas at least two vertices. Concerning asymmetric digraphs, we show that every vertexuof an asymmetric CKI-digraphDonn≥5 vertices satisfies d + (u) +d − (u)≤n−3 andd + (u), d − (u)≤n−5. As a consequence, we establish that there are exactly four asymmetric CKI-digraphs onn≤7 vertices. Furthermore, we study the maximum order of a subtournament contained in a not necessarily asymmetric CKI-digraph. | en_US |
dc.description.sponsorship | AKCE Int. J. Graphs Comb. | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Taylor & Francis | en_US |
dc.relation.haspart | 2543-3474 | - |
dc.rights | https://doi.org/10.1080/09728600.2014.12088764 | - |
dc.rights | https://www.tandfonline.com/doi/abs/10.1080/09728600.2014.12088764 | - |
dc.subject | Matemáticas | en_US |
dc.subject | Matemáticas computacionales | en_US |
dc.subject | Teoría de grafos | en_US |
dc.title | Structural properties of CKI-digraphs | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|