DC Field | Value | Language |
dc.contributor.author | ARAUJO PARDO, MARTHA GABRIELA | - |
dc.contributor.author | DE LA CRUZ TORRES, CLAUDIA MARLENE | - |
dc.contributor.author | GONZALEZ MORENO, DIEGO ANTONIO | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/25186">MARTHA GABRIELA ARAUJO PARDO</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/799875">CLAUDIA MARLENE DE LA CRUZ TORRES</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/299097">DIEGO ANTONIO GONZALEZ MORENO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/4</dc:subject> | - |
dc.date.accessioned | 2021-04-13T17:11:07Z | - |
dc.date.available | 2021-04-13T17:11:07Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | arXiv.org Cornell University 2020 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/678 | - |
dc.description.abstract | A [z, r; g]-mixed cage is a mixed graph z-regular by arcs, r-regular by edges, with girth g and minimum
order. Let n[z, r; g] denote the order of a [z, r; g]-mixed cage.
In this paper we prove that n[z, r; g] is a monotonicity function, with respect of g, for z ∈ {1, 2}, and
we use it to prove that the underlying graph of a [z, r; g]-mixed cage is 2-connected, for z ∈ {1, 2}. We also
prove that [z, r; g]-mixed cages are strong connected. We present bounds of n[z, r; g] and constructions
of [z, r; 5]-mixed graphs and show a [10, 3; 5]-mixed cage of order 50. | en_US |
dc.description.sponsorship | Cornell University | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Nueva York : Cornell University | en_US |
dc.rights | https://arxiv.org/abs/2009.13709 | - |
dc.subject | Jaulas mixtas | en_US |
dc.subject | Monotonicidad | en_US |
dc.subject | Conectividad | en_US |
dc.title | Mixed Cages : monotony, connectivity and upper bounds | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|