DC Field | Value | Language |
dc.contributor.author | CARTAS FUENTEVILLA, ROBERTO | - |
dc.contributor.author | HERRERA AGUILAR, ALFREDO | - |
dc.contributor.author | MATLALCUATZI ZAMORA, VIRIDIANA | - |
dc.contributor.author | NORIEGA CORNELIO, URIEL | - |
dc.contributor.author | ROMERO SANPEDRO, JUAN MANUEL | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/16034">ROBERTO CARTAS FUENTEVILLA</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/21161">ALFREDO HERRERA AGUILAR</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/633197">VIRIDIANA MATLALCUATZI ZAMORA</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/814574">URIEL NORIEGA CORNELIO</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/239423">JUAN MANUEL ROMERO SANPEDRO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/7</dc:subject> | - |
dc.date.accessioned | 2021-05-04T18:59:14Z | - |
dc.date.available | 2021-05-04T18:59:14Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Eur. Phys. J. Plus 135, 2 (2020) | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/751 | - |
dc.description.abstract | In this article, we focus on constructing a new family of spatially anisotropic
Lifshitz spacetimes with arbitrary dynamical exponent z and constant negative curvature in
d + 1 dimensions within the framework of the Einstein–Proca theory with a single vector
field. So far, this kind of anisotropic spaces has been constructed with the aid of a set of
vector fields. We also consider the spatially isotropic case as a particular limit. The con structed metric tensor depends on the spacetime dimensionality, the critical exponent and
the Lifshitz radius; while, the curvature scalar depends just on the number of dimensions.
We also obtain a novel spectrum with negative squared mass; we compute the corresponding
Breitenlohner–Freedman bound and observe that the found family of spatially anisotropic
Lifshitz spaces respects this bound. Hence, these new solutions are stable and can be use ful within the gravity/condensed matter theory holographic duality, since the spectrum with
negative squared mass is complementary to the positive ones already known in the literature.
We also examine the null energy condition and show that it is essentially satisfied along all
the boundary directions, i.e., along all directions, except the r one, of our Lifshitz spacetime
with the corresponding consistency conditions imposed on the scaling exponents. | en_US |
dc.description.sponsorship | Springer Nature | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Suiza : Springer Nature | en_US |
dc.relation.haspart | 2190-5444 | - |
dc.rights | https://doi.org/10.1140/epjp/s13360-019-00091-2 | - |
dc.rights | https://arxiv.org/pdf/1804.02278.pdf | - |
dc.subject | Holografía no relativista | en_US |
dc.subject | Espacio-tiempos Lifshitz | en_US |
dc.subject | Anisotropía espacial | en_US |
dc.subject | Breitenlohner-Freedman | en_US |
dc.title | Anisotropic Lifshitz holography in Einstein–Proca theory with stable negative mass spectrum | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|