DC Field | Value | Language |
dc.contributor.author | GAONA ORDOÑEZ, ALEJANDRO | - |
dc.contributor.author | ROMERO SANPEDRO, JUAN MANUEL | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/43062">ALEJANDRO GAONA ORDOÑEZ</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/239423">JUAN MANUEL ROMERO SANPEDRO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/7</dc:subject> | - |
dc.date.accessioned | 2021-05-04T19:31:37Z | - |
dc.date.available | 2021-05-04T19:31:37Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | arXiv.org Cornell University 2014 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/753 | - |
dc.description.abstract | Using the Dirac Method, we study the Hamiltonian consistency for
three field theories. First we study the electrodynamics a la Hoˇrava
and we show that this system is consistent for an arbitrary dynamical
exponent z. Second, we study a Lifshitz type electrodynamics, which
was proposed in [1]. For this last system we found that the canonical
momentum and the electrical field are related through a Proca type
Green function, however this system is consistent. In addition, we
show that the anisotropic Yang-Mills theory with dynamical exponent
z = 2 is consistent. Finally, we study a generalized anisotropic Yang Mills theory and we show that this last system is consistent too. | en_US |
dc.description.sponsorship | Cornell University | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Nueva York : Cornell University | en_US |
dc.rights | https://arxiv.org/pdf/1411.5927.pdf | - |
dc.subject | Método de Dirac | en_US |
dc.subject | Teoría anisotrópica | en_US |
dc.subject | Teorías de campo Lifshitz | en_US |
dc.title | Hamiltonian analysis for Lifshitz type fields | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|