Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorLOPEZ SANCHEZ, ERICK JAVIER-
dc.contributor.authorROMERO SANPEDRO, JUAN MANUEL-
dc.contributor.authorYEPEZ MARTINEZ, HUITZILIN-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/257697">ERICK JAVIER LOPEZ SANCHEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/239423">JUAN MANUEL ROMERO SANPEDRO</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/92367">HUITZILIN YEPEZ MARTINEZ</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/7</dc:subject>-
dc.date.accessioned2021-05-12T17:53:56Z-
dc.date.available2021-05-12T17:53:56Z-
dc.date.issued2017-
dc.identifier.citationarXiv.org Cornell University 2017en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/777-
dc.description.abstractDifferent experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer’s disease and Parkinson’s disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark feature of these diseases. The diffusion in the axons can become to anomalous as a result from this abnormality. In this case the voltage propagation in axons is affected. Another hallmark feature of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increase, the voltage decreases. A similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.en_US
dc.description.sponsorshipCornell Universityen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Cornell Universityen_US
dc.rightshttps://arxiv.org/pdf/1709.02443.pdf-
dc.subjectDerivadas fraccionadasen_US
dc.subjectEcuación generalizadaen_US
dc.titleFractional cable equation for general geometry: A model of axons with swellings and anomalous diffusionen_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.