Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: Cable equation for general geometry
Autor(es): LOPEZ SANCHEZ, ERICK JAVIER
ROMERO SANPEDRO, JUAN MANUEL
Temas: Biofísica
Ecuación del cable
Ecuación generalizada
Geometría del cable
Fecha: 2017
Editorial: Nueva York : Cornell University
Citation: arXiv.org Cornell University 2017
Resumen: The cable equation describes the voltage in a straight cylindrical cable, this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a non constant radius are important for some phenomena, for example discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimer, Parkinson, HIV-associated dementia and Multiple Sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross-section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross-section and zero curvature. For this case we show that when the cross-section of the cable increases the voltage decreases. Inspired in this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-section area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross-section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/780
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Cable equation for general geometry.pdf1.36 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.