Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorLOPEZ SANCHEZ, ERICK JAVIER-
dc.contributor.authorROMERO SANPEDRO, JUAN MANUEL-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/257697">ERICK JAVIER LOPEZ SANCHEZ</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/239423">JUAN MANUEL ROMERO SANPEDRO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/1</dc:subject>-
dc.date.accessioned2021-05-12T19:31:58Z-
dc.date.available2021-05-12T19:31:58Z-
dc.date.issued2017-
dc.identifier.citationarXiv.org Cornell University 2017en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/780-
dc.description.abstractThe cable equation describes the voltage in a straight cylindrical cable, this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a non constant radius are important for some phenomena, for example discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimer, Parkinson, HIV-associated dementia and Multiple Sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross-section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross-section and zero curvature. For this case we show that when the cross-section of the cable increases the voltage decreases. Inspired in this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-section area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross-section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cableen_US
dc.description.sponsorshipCornell Universityen_US
dc.language.isoInglésen_US
dc.publisherNueva York : Cornell Universityen_US
dc.rightshttps://arxiv.org/pdf/1702.00718.pdf-
dc.subjectBiofísicaen_US
dc.subjectEcuación del cableen_US
dc.subjectEcuación generalizadaen_US
dc.subjectGeometría del cableen_US
dc.titleCable equation for general geometryen_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Cable equation for general geometry.pdf1.36 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.