Título: | A compact representation for cross-domain short text clustering |
Autor(es): | NUÑEZ REYES, ALBA ROCIO VILLATORO TELLO, ESAU RAMIREZ DE LA ROSA, ADRIANA GABRIELA SANCHEZ SANCHEZ, CHRISTIAN |
Temas: | Twitter Transferencia de conocimientos |
Fecha: | 2016 |
Editorial: | México : MICAI |
Citation: | Advances in Computational Intelligence. 15th Mexican International Conference on Artificial Intelligence |
Resumen: | Supervised classification strategies, assume that training and test documents are drawn from the same distribution. However, in many cases this scenario is unreal, especially in data sets extracted from Twitter. Thus, the process of using a statistical model trained in one (source) domain, for categorizing information contained in a different (target) domain, requires bridging the gab between the two domains to facilitate the knowledge transfer. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/788 |
Aparece en las colecciones: | Libros |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
A Compact Representation for Cross-Domain Short Text Clustering.pdf | 3.21 MB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.