DC Field | Value | Language |
dc.contributor.author | VALERE COSSU, JEAN | - |
dc.contributor.author | ABASCAL MENA, MARIA DEL ROCIO | - |
dc.contributor.author | MOLINA, ALEJANDRO | - |
dc.contributor.author | TORRES MORENO, JUAN MANUEL | - |
dc.contributor.author | SANJUAN, ERIC | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/38286">MARIA DEL ROCIO ABASCAL MENA</dc:creator> | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/65017">JUAN MANUEL TORRES MORENO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/5</dc:subject> | - |
dc.date.accessioned | 2021-05-28T16:56:59Z | - |
dc.date.available | 2021-05-28T16:56:59Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | International Conference on Artificial Intelligence, IJCAI-15 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/826 | - |
dc.description.abstract | With regular elections challenges, opinion mining
on Twitter recently attracted research interest in
politics using Information Retrieval (IR) and Nat-
ural Language Processing (NLP). However, get-
ting language and domain-specific annotated data
still remains a costly manual step. In addition, the
amount and quality of these annotations may be
critical regarding the performance of NLP-based
Machine Learning (ML) techniques. An alterna-
tive solution is to use cross-language and cross-
domain sets to simulate training data. This paper
describes ML approaches to automatically annotate
Spanish tweets dealing with the online reputation of
politicians. Our main finding is that a simple sta-
tistical NLP classifier without in-domain training
can provide as reliable annotation as humans an-
notators can. It also outperforms more specific re-
sources such as polarity lexicon or in-domain man-
ually translated data. | en_US |
dc.description.sponsorship | IJCAI | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Buenos Aires : IJCAI | en_US |
dc.rights | https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhZGFwdGl2ZW5scDIwMTV8Z3g6MTlkZTdkZTQ3YWZmM2U1 | - |
dc.subject | Procesamiento natural del lenguaje | en_US |
dc.subject | Aprendizaje automático | en_US |
dc.subject | Minería de opinión | en_US |
dc.subject | Análisis político de minería de Twitter | en_US |
dc.title | Machine learned annotation of tweets about politicians' reputation during presidential elections: the cases of Mexico and France. | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|