Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorVALERE COSSU, JEAN-
dc.contributor.authorABASCAL MENA, MARIA DEL ROCIO-
dc.contributor.authorMOLINA, ALEJANDRO-
dc.contributor.authorTORRES MORENO, JUAN MANUEL-
dc.contributor.authorSANJUAN, ERIC-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/38286">MARIA DEL ROCIO ABASCAL MENA</dc:creator>-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/65017">JUAN MANUEL TORRES MORENO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/5</dc:subject>-
dc.date.accessioned2021-05-28T16:56:59Z-
dc.date.available2021-05-28T16:56:59Z-
dc.date.issued2015-
dc.identifier.citationInternational Conference on Artificial Intelligence, IJCAI-15en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/826-
dc.description.abstractWith regular elections challenges, opinion mining on Twitter recently attracted research interest in politics using Information Retrieval (IR) and Nat- ural Language Processing (NLP). However, get- ting language and domain-specific annotated data still remains a costly manual step. In addition, the amount and quality of these annotations may be critical regarding the performance of NLP-based Machine Learning (ML) techniques. An alterna- tive solution is to use cross-language and cross- domain sets to simulate training data. This paper describes ML approaches to automatically annotate Spanish tweets dealing with the online reputation of politicians. Our main finding is that a simple sta- tistical NLP classifier without in-domain training can provide as reliable annotation as humans an- notators can. It also outperforms more specific re- sources such as polarity lexicon or in-domain man- ually translated data.en_US
dc.description.sponsorshipIJCAIen_US
dc.language.isoInglésen_US
dc.publisherBuenos Aires : IJCAIen_US
dc.rightshttps://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxhZGFwdGl2ZW5scDIwMTV8Z3g6MTlkZTdkZTQ3YWZmM2U1-
dc.subjectProcesamiento natural del lenguajeen_US
dc.subjectAprendizaje automáticoen_US
dc.subjectMinería de opiniónen_US
dc.subjectAnálisis político de minería de Twitteren_US
dc.titleMachine learned annotation of tweets about politicians' reputation during presidential elections: the cases of Mexico and France. en_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.