Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: Bilingual and cross domain politics analysis
Autor(es): VALERE COSSU, JEAN
ABASCAL MENA, MARIA DEL ROCIO
MOLINA, ALEJANDRO
TORRES MORENO, JUAN MANUEL
SANJUAN, ERIC
Temas: Políticas bilingües
Multidominio
Fecha: 2014
Editorial: México : Instituto Politécnico Nacional, Centro de Investigación en Computación
Citation: Research in Computing Science 85 (2014)
Resumen: Opinion mining on Twitter recently attracted research in terest in politics using Information Retrieval (IR) and Natural Lan guage Processing (NLP). However, getting domain-specific annotated data still remains a costly manual step. In addition, the amount and quality of these annotation may be critical regarding the performance of machine learning (ML) based systems. An alternative solution is to use cross-language and cross-domain sets to simulate training data. This paper describe a ML approach to automatically annotate Spanish tweets dealing with the online-reputation of politicians. Our main finding is that a simple statistical NLP classifier without in-domain training can provide as reliable annotation as humans annotators and outperform more specific resources such as lexicon or in-domain data.
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/827
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Bilingual and cross domain politics analysis.pdf212.34 kBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.