Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Título: Inferring highly-dense representations for clustering broadcast media content
Autor(es): VILLATORO TELLO, ESAU
PARIDA, SHANTIPRIYA
MOTLICEK, PETR
BOJAR, ONDREJ
Temas: Análisis cluster
Medios de comunicación masiva
Fecha: 2020
Editorial: Polonia : De Gruyter
Citation: The Prague Bulletin of Mathematical Linguistics, (115), 2020
Resumen: We propose to employ a low-resolution representation for accurately categorizing spoken documents. Our proposed approach guarantees document clusters using a highly dense rep resentation. Performed experiments, using a dataset from a German TV channel, demonstrate that using low-resolution concepts for representing the broadcast media content allows obtain ing a relative improvement of 70.4% in terms of the Silhouette coefficient compared to deep neural architectures.
URI: http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/899
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Inferring Highly-dense Representations for Clustering Broadcast Media Content.pdf1.08 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.