Título: | Inferring highly-dense representations for clustering broadcast media content |
Autor(es): | VILLATORO TELLO, ESAU PARIDA, SHANTIPRIYA MOTLICEK, PETR BOJAR, ONDREJ |
Temas: | Análisis cluster Medios de comunicación masiva |
Fecha: | 2020 |
Editorial: | Polonia : De Gruyter |
Citation: | The Prague Bulletin of Mathematical Linguistics, (115), 2020 |
Resumen: | We propose to employ a low-resolution representation for accurately categorizing spoken documents. Our proposed approach guarantees document clusters using a highly dense rep resentation. Performed experiments, using a dataset from a German TV channel, demonstrate that using low-resolution concepts for representing the broadcast media content allows obtain ing a relative improvement of 70.4% in terms of the Silhouette coefficient compared to deep neural architectures. |
URI: | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/899 |
Aparece en las colecciones: | Artículos |
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Inferring Highly-dense Representations for Clustering Broadcast Media Content.pdf | 1.08 MB | Adobe PDF | Visualizar/Abrir |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.