DC Field | Value | Language |
dc.contributor.author | VILLATORO TELLO, ESAU | - |
dc.contributor.author | PARIDA, SHANTIPRIYA | - |
dc.contributor.author | MOTLICEK, PETR | - |
dc.contributor.author | BOJAR, ONDREJ | - |
dc.coverage.spatial | <dc:creator id="info:eu-repo/dai/mx/cvu/165545">ESAU VILLATORO TELLO</dc:creator> | - |
dc.coverage.temporal | <dc:subject>info:eu-repo/classification/cti/5</dc:subject> | - |
dc.date.accessioned | 2021-07-27T21:51:19Z | - |
dc.date.available | 2021-07-27T21:51:19Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | The Prague Bulletin of Mathematical Linguistics, (115), 2020 | en_US |
dc.identifier.uri | http://ilitia.cua.uam.mx:8080/jspui/handle/123456789/899 | - |
dc.description.abstract | We propose to employ a low-resolution representation for accurately categorizing spoken
documents. Our proposed approach guarantees document clusters using a highly dense rep resentation. Performed experiments, using a dataset from a German TV channel, demonstrate
that using low-resolution concepts for representing the broadcast media content allows obtain ing a relative improvement of 70.4% in terms of the Silhouette coefficient compared to deep
neural architectures. | en_US |
dc.description.sponsorship | De Gruyter | en_US |
dc.language.iso | Inglés | en_US |
dc.publisher | Polonia : De Gruyter | en_US |
dc.relation.haspart | 1804-0462 | - |
dc.rights | https://doi.org/10.14712/00326585.004 | - |
dc.rights | https://ufal.mff.cuni.cz/pbml/115/art-villatoro-tello-et-al.pdf | - |
dc.subject | Análisis cluster | en_US |
dc.subject | Medios de comunicación masiva | en_US |
dc.title | Inferring highly-dense representations for clustering broadcast media content | en_US |
dc.type | Artículo | en_US |
Aparece en las colecciones: | Artículos
|