Logo
Logo
Campo de búsqueda / búsqueda general

 
Autor
Título
Tema

Full metadata record
DC FieldValueLanguage
dc.contributor.authorVILLATORO TELLO, ESAU-
dc.contributor.authorPARIDA, SHANTIPRIYA-
dc.contributor.authorMOTLICEK, PETR-
dc.contributor.authorBOJAR, ONDREJ-
dc.coverage.spatial<dc:creator id="info:eu-repo/dai/mx/cvu/165545">ESAU VILLATORO TELLO</dc:creator>-
dc.coverage.temporal<dc:subject>info:eu-repo/classification/cti/5</dc:subject>-
dc.date.accessioned2021-07-27T21:51:19Z-
dc.date.available2021-07-27T21:51:19Z-
dc.date.issued2020-
dc.identifier.citationThe Prague Bulletin of Mathematical Linguistics, (115), 2020en_US
dc.identifier.urihttp://ilitia.cua.uam.mx:8080/jspui/handle/123456789/899-
dc.description.abstractWe propose to employ a low-resolution representation for accurately categorizing spoken documents. Our proposed approach guarantees document clusters using a highly dense rep resentation. Performed experiments, using a dataset from a German TV channel, demonstrate that using low-resolution concepts for representing the broadcast media content allows obtain ing a relative improvement of 70.4% in terms of the Silhouette coefficient compared to deep neural architectures.en_US
dc.description.sponsorshipDe Gruyteren_US
dc.language.isoInglésen_US
dc.publisherPolonia : De Gruyteren_US
dc.relation.haspart1804-0462-
dc.rightshttps://doi.org/10.14712/00326585.004-
dc.rightshttps://ufal.mff.cuni.cz/pbml/115/art-villatoro-tello-et-al.pdf-
dc.subjectAnálisis clusteren_US
dc.subjectMedios de comunicación masivaen_US
dc.titleInferring highly-dense representations for clustering broadcast media contenten_US
dc.typeArtículoen_US
Aparece en las colecciones:Artículos

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
Inferring Highly-dense Representations for Clustering Broadcast Media Content.pdf1.08 MBAdobe PDFVisualizar/Abrir


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.